2,589 research outputs found

    Exponential decay in a spin bath

    Full text link
    We show that the coherence of an electron spin interacting with a bath of nuclear spins can exhibit a well-defined purely exponential decay for special (`narrowed') bath initial conditions in the presence of a strong applied magnetic field. This is in contrast to the typical case, where spin-bath dynamics have been investigated in the non-Markovian limit, giving super-exponential or power-law decay of correlation functions. We calculate the relevant decoherence time T_2 explicitly for free-induction decay and find a simple expression with dependence on bath polarization, magnetic field, the shape of the electron wave function, dimensionality, total nuclear spin I, and isotopic concentration for experimentally relevant heteronuclear spin systems.Comment: 4+ pages, 3 figures; v2: 9 pages, 3 figures (added four appendices with extensive technical details, version to appear in Phys. Rev. B

    Singlet-triplet decoherence due to nuclear spins in a double quantum dot

    Full text link
    We have evaluated hyperfine-induced electron spin dynamics for two electrons confined to a double quantum dot. Our quantum solution accounts for decay of a singlet-triplet correlator even in the presence of a fully static nuclear spin system, with no ensemble averaging over initial conditions. In contrast to an earlier semiclassical calculation, which neglects the exchange interaction, we find that the singlet-triplet correlator shows a long-time saturation value that differs from 1/2, even in the presence of a strong magnetic field. Furthermore, we find that the form of the long-time decay undergoes a transition from a rapid Gaussian to a slow power law (∼1/t3/2\sim 1/t^{3/2}) when the exchange interaction becomes nonzero and the singlet-triplet correlator acquires a phase shift given by a universal (parameter independent) value of 3π/43\pi/4 at long times. The oscillation frequency and time-dependent phase shift of the singlet-triplet correlator can be used to perform a precision measurement of the exchange interaction and Overhauser field fluctuations in an experimentally accessible system. We also address the effect of orbital dephasing on singlet-triplet decoherence, and find that there is an optimal operating point where orbital dephasing becomes negligible.Comment: 12 pages, 4 figure

    Die probleem van hardhorendheid

    Get PDF
    No Abstract

    Free-induction decay and envelope modulations in a narrowed nuclear spin bath

    Full text link
    We evaluate free-induction decay for the transverse components of a localized electron spin coupled to a bath of nuclear spins via the Fermi contact hyperfine interaction. Our perturbative treatment is valid for special (narrowed) bath initial conditions and when the Zeeman energy of the electron bb exceeds the total hyperfine coupling constant AA: b>Ab>A. Using one unified and systematic method, we recover previous results reported at short and long times using different techniques. We find a new and unexpected modulation of the free-induction-decay envelope, which is present even for a purely isotropic hyperfine interaction without spin echoes and for a single nuclear species. We give sub-leading corrections to the decoherence rate, and show that, in general, the decoherence rate has a non-monotonic dependence on electron Zeeman splitting, leading to a pronounced maximum. These results illustrate the limitations of methods that make use of leading-order effective Hamiltonians and re-exponentiation of short-time expansions for a strongly-interacting system with non-Markovian (history-dependent) dynamics.Comment: 13 pages, 9 figure

    Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics

    Full text link
    We have performed a systematic calculation for the non-Markovian dynamics of a localized electron spin interacting with an environment of nuclear spins via the Fermi contact hyperfine interaction. This work applies to an electron in the s -type orbital ground state of a quantum dot or bound to a donor impurity, and is valid for arbitrary polarization p of the nuclear spin system, and arbitrary nuclear spin I in high magnetic fields. In the limit of p=1 and I=1/2, the Born approximation of our perturbative theory recovers the exact electron spin dynamics. We have found the form of the generalized master equation (GME) for the longitudinal and transverse components of the electron spin to all orders in the electron spin--nuclear spin flip-flop terms. Our perturbative expansion is regular, unlike standard time-dependent perturbation theory, and can be carried-out to higher orders. We show this explicitly with a fourth-order calculation of the longitudinal spin dynamics. In zero magnetic field, the fraction of the electron spin that decays is bounded by the smallness parameter \delta=1/p^{2}N, where N is the number of nuclear spins within the extent of the electron wave function. However, the form of the decay can only be determined in a high magnetic field, much larger than the maximum Overhauser field. In general the electron spin shows rich dynamics, described by a sum of contributions with non-exponential decay, exponential decay, and undamped oscillations. There is an abrupt crossover in the electron spin asymptotics at a critical dimensionality and shape of the electron envelope wave function. We propose a scheme that could be used to measure the non-Markovian dynamics using a standard spin-echo technique, even when the fraction that undergoes non-Markovian dynamics is small.Comment: 22 pages, 8 figure

    Vacancy assisted arsenic diffusion and time dependent clustering effects in silicon

    Full text link
    We present results of kinetic lattice Monte Carlo (KLMC) simulations of substitutional arsenic diffusion in silicon mediated by lattice vacancies. Large systems are considered, with 1000 dopant atoms and long range \textit{ab initio} interactions, to the 18th nearest lattice neighbor, and the diffusivity of each defect species over time is calculated. The concentration of vacancies is greater than equilibrium concentrations in order to simulate conditions shortly after ion implantation. A previously unreported time dependence in the applicability of the pair diffusion model, even at low temperatures, is demonstrated. Additionally, long range interactions are shown to be of critical importance in KLMC simulations; when shorter interaction ranges are considered only clusters composed entirely of vacancies form. An increase in arsenic diffusivity for arsenic concentrations up to 1019cm−310^{19} \text{cm}^{-3} is observed, along with a decrease in arsenic diffusivity for higher arsenic concentrations, due to the formation of arsenic dominated clusters. Finally, the effect of vacancy concentration on diffusivity and clustering is studied, and increasing vacancy concentration is found to lead to a greater number of clusters, more defects per cluster, and a greater vacancy fraction within the clusters.Comment: 22 pages, 16 figure

    Lepton-mediated electroweak baryogenesis

    Get PDF
    We investigate the impact of the tau and bottom Yukawa couplings on the transport dynamics for electroweak baryogenesis in supersymmetric extensions of the Standard Model. Although it has generally been assumed in the literature that all Yukawa interactions except those involving the top quark are negligible, we find that the tau and bottom Yukawa interaction rates are too fast to be neglected. We identify an illustrative "lepton-mediated electroweak baryogenesis" scenario in which the baryon asymmetry is induced mainly through the presence of a left-handed leptonic charge. We derive analytic formulae for the computation of the baryon asymmetry that, in light of these effects, are qualitatively different from those in the established literature. In this scenario, for fixed CP-violating phases, the baryon asymmetry has opposite sign compared to that calculated using established formulae.Comment: 26 pages, 5 figure

    Rigorous Born Approximation and beyond for the Spin-Boson Model

    Full text link
    Within the lowest-order Born approximation, we present an exact calculation of the time dynamics of the spin-boson model in the ohmic regime. We observe non-Markovian effects at zero temperature that scale with the system-bath coupling strength and cause qualitative changes in the evolution of coherence at intermediate times of order of the oscillation period. These changes could significantly affect the performance of these systems as qubits. In the biased case, we find a prompt loss of coherence at these intermediate times, whose decay rate is set by α\sqrt{\alpha}, where α\alpha is the coupling strength to the environment. We also explore the calculation of the next order Born approximation: we show that, at the expense of very large computational complexity, interesting physical quantities can be rigorously computed at fourth order using computer algebra, presented completely in an accompanying Mathematica file. We compute the O(α)O(\alpha) corrections to the long time behavior of the system density matrix; the result is identical to the reduced density matrix of the equilibrium state to the same order in α\alpha. All these calculations indicate precision experimental tests that could confirm or refute the validity of the spin-boson model in a variety of systems.Comment: Greatly extended version of short paper cond-mat/0304118. Accompanying Mathematica notebook fop5.nb, available in Source, is an essential part of this work; it gives full details of the fourth-order Born calculation summarized in the text. fop5.nb is prepared in arXiv style (available from Wolfram Research

    Hall effect in quasi one-dimensional organic conductors

    Full text link
    We study the Hall effect in a system of weakly coupled Luttinger Liquid chains, using a Memory function approach to compute the Hall constant in the presence of umklapp scattering along the chains. In this approximation, the Hall constant decomposes into two terms: a high-frequency term and a Memory function term. For the case of zero umklapp scattering, where the Memory function vanishes, the Hall constant is simply the band value, in agreement with former results in a similar model with no dissipation along the chains. With umklapp scattering along the chains, we find a power-law temperature dependance of the Hall constant. We discuss the applications to quasi 1D organic conductors at high temperatures.Comment: Proceedings of the ISCOM conference "Sixth International Symposium on Crystalline Organic Metals, Superconductors, and Ferromagnets", Key West, Florida, USA (Sept. 2005), to be plublished in the Journal of Low Temperature Physic

    Vergleichendes Wörterbuch der indogermanischen Sprachen (Vol. 1)

    No full text
    First published 1870, PDF-file is the 4th editio
    • …
    corecore